
CS250B: Modern Computer Systems

Organizing Storage Devices

Sang-Woo Jun



Redundant Array of Independent Disks
(RAID)

❑ Technology of managing multiple storage devices
o Typically in a single machine/array, due to limitations of fault-tolerance

❑ Multiple levels, depending on how to manage fault-tolerance
o RAID 0 and RAID 5 most popular right now

❑ RAID 0: No fault tolerance, blocks striped across however many drives
o Fastest performance

o Drive failure results in data loss

o Block size configurable

o Similar in use cases to the Linux Logical Volume manager (LVM)



Fault-Tolerance in RAID 5

A1 A2 A3 AP

B1 B2 BP B3

❑ RAID 5 stripes blocks across available storage, but also stores a parity 
block
o Parity block calculated using xor (A1^A2^A3=AP)

o One disk failure can be recovered by re-calculating parity
• A1 = AP^A2^A3, etc

o Two disk failure cannot be recovered

o Slower writes, decreased effective capacity

Storage 1 Storage 2 Storage 3 Storage 4



Degraded Mode in RAID 5

❑ In case of a disk failure it enters the “degraded mode”
o Accesses from failed disk is served by reading all others and xor’ing them (slower 

performance)

❑ The failed disk must be replaced, and then “rebuilt”
o All other storages are read start-to-finish, and parity calculated to recover the 

original data

o With many disks, it takes long to read everything – “Declustering” to create 
multiple parity domains

o Sometimes a “hot spare” disk is added to be idle, and quickly replace a failed 
device



Storage in the Network

❑ Prepare for lightning rounds of very high-level concepts!



Network-Attached Storage (NAS)

❑ Intuition: Server dedicated to serving files “File Server”
o File-level abstraction

o NAS device own the local RAID, File system, etc

o Accessed via file system/network protocol like NFS (Network File System), or FTP

❑ Fixed functionality, using embedded systems with acceleration
o Hardware packet processing, etc

❑ Regular Linux servers also configured to act as NAS

❑ Each NAS node is a separate entity – Larger storage cluster needs 
additional management



Network-Attached Storage (NAS)

❑ Easy to scale and manage compared to direct-attached storage
o Buy a NAS box, plug it into an Ethernet port

o Need more storage? Plug in more drives into the box

❑ Difficult to scale out of the centralized single node limit

❑ Single node performance limitations
o Server performance, network performance

Ethernet, etc

Client

Client

Client

CPUMem



Storage-Area Networks (SAN)

❑ In the beginning: separate network just for storage traffic
o Fibre Channel, etc, first created because Ethernet was too slow

o Switch, hubs, and the usual infrastructure

❑ Easier to scale, manage by adding storage to the network
o Performance distributed across many storage devices

❑ Block level access to individual storage nodes in the network

❑ Controversial opinion: Traditional separate SAN is dying out
o Ethernet is unifying all networks in the datacenter 

• 10 GbE, 40 GbE slowly subsuming Fibre Channel, Infiniband, …



Disaggregated Storage

❑ Allows storage resources to
scale independently



Converged Infrastructure

❑ Computation, Memory, Storage converged into a single unit, and 
replicated

❑ Became easier to manage compared to separate storage domains
o Software became better (Distributed file systems, MapReduce, etc)

o Decreased complexity – When a node dies, simply replace the whole thing

❑ Cost-effective by using commercial off-the-shelf parts (PCs)
o Economy of scale

o No special equipment (e.g., SAN)

Chris von Nieda, “How Does Google Work,” 2010



Hyper-Converged Infrastructure

❑ Still (relatively) homogenous units of compute, memory, storage

❑ Each unit is virtualized, disaggregated via software
o E.g., storage is accessed as a pool as if on a SAN

o Each unit can be scaled independently

o A cloud VM can be configured to access an arbitrary amount of virtual storage

o Example: vmware vSAN



Object Storage

❑ Instead of managing content-oblivious blocks, the file system manages 
objects with their own metadata
o Instead of directory/file hierarchies, each object addressed via global identifier

o Kind of like key-value stores, in fact, the difference is ill-defined

o e.g., Lustre, Ceph object store

❑ An “Objest Storage Device” is storage hardware that exposes an object 
interface
o Still mostly in research phases

o High level semantics of storage available to the hardware controller for 
optimization



Computational Storage

❑ Offloading computation to an engine on the storage device

❑ Why?
o Modern SSDs have significant amount of embedded computation capacity (often 4 

or more ARM cores), but they are not always busy

o Some problems are latency dependent, and moving data all the way to CPU harms 
performance

o The host-storage link becomes a bandwidth bottleneck with enough storage 
devices (4x 4-lane PCIe SSD saturates a 16 lane PCIe root complex)
• Plus, peak internal bandwidth of a storage device is typically faster than the link bandwidth

o Moving data to CPU consumes a lot of power



Bandwidth Bottlenecks In Storage

Jaeyoung Do et.al., “Programmable Solid-State Storage in Future Cloud Datacenters,” Communications of the ACM 2019 

64 SSDs x ~2 GB/s
= ~128 GB/s

16 lanes PCIe Gen 3
= ~16 GB/s

8x Bandwidth Gap!
Internal bandwidth
faster than its PCIe

2.5x Internal read BW
(Source: Samsung)



Typical Computational Storage Architecture

Computation
Engine

Storage Device

Storage Device

Host

PCIe

❑ Computation engine typically function both as PCIe endpoint (to host) 
and root complex (to storage devices) 

❑ FTL May exist on each storage device (off-the-shelf), or computation 
engine (open channel, or raw chips)

❑ Computation may be ARM cores, FPGAs
or something else
o Some storage devices boot Linux!

PCIe



Some Available Devices

❑ Many come with near-data FPGA acceleration
o High-performance computation, still within the storage power budget

o < 10W assigned to computation (PCIe power limitations, etc)

EMC Dragonfire board BittWare 250S+



Some Points

❑ No standard interface or programming model yet
o All existing implementations have custom interfaces, with varying levels of access 

abstraction
• Block devices (transparent FTL), raw chip access, etc

o Storage Networking Industry Association (SNIA) Computational Storage working 
group just created (2018)

❑ Accelerator cannot take advantage of page cache
o Page cache exists on host, which it cannot access

o Some database implementations saw even performance degradation because of 
this



Example – YourSQL

❑ “Early filtering” data in the storage to reduce amount of data sent to host
o Offloads computation, saves link bandwidth

o Query optimizer modified to move queries with low “filtering ratio” to an early 
position

o Filtering ratio metric is storage aware, choosing queries that lower read page 
count instead of simple row count

Jo et. al., “YourSQL: A High-Performance Database System Leveraging In-Storage Computing,” VLDB 2016

Samsung PM1725



Example – YourSQL

❑ Evaluation on 16-core Xeon, 64 GB memory, running MySQL
o Near-storage compute has dual-core ARM R7

o Query planner and storage engine significantly re-written

❑ Improves TPC-H benchmark by 3.6x over baseline
o Most improved query improved by 15x

❑ Query type 1: Selection improved 7x
o Storage bandwidth used inefficiently in baseline MySQL

❑ Query type 2: Join improved 40x
o Size of joined tables reduced by early filtering

• Baseline not fitting in memory?

Jo et. al., “YourSQL: A High-Performance Database System Leveraging In-Storage Computing,” VLDB 2016



Example – BlueDBM

❑ Research prototype at MIT (2015) for distributed 
computational storage
o 20-node cluster, 20 Virtex 7 FPGAs, total 20 TB flash

o Each virtex 7 FPGA networked directly to each other via 
low-latency serial links
(8x 10 Gbps per link)



Latency Profile of Analytics on
Distributed Flash Storage

❑ Distributed processing involves many system components
o Flash device access

o Storage software (OS, FTL, …)

o Network interface (10gE, Infiniband, …)

o Actual processing

Flash
Access
75 μs

50~100 μs

Storage
Software

100 μs

100~1000 μs

Network
20 μs

20~1000 μs

Processing

…



Latency Profile of Analytics on
Distributed Flash Storage

❑ Architectural modifications can remove unnecessary overhead
o Near-storage processing

o Cross-layer optimization of flash management software*

o Dedicated storage area network

o Computation Accelerator

Flash
Access
75 μs

50~100 μs < 5 μs …



Latency-Emphasized Example 
– Graph Traversal

❑ Latency-bound problem because the next node to be visited cannot be 
predicted 
o Completely bound by storage access latency in the worst case

Flash 1 Flash 2 Flash 3

Host 1 Host 3

In-Store 
Processor

Host 2

Latency improved by
1. Faster SAN
2. Near-Storage Acceleraor



Latency-Emphasized Example 
– Graph Traversal

0

4000

8000

12000

16000

20000

Software+DRAM Software +

Separate Network

Software +

Controller

Network

Accelerator +

Controller

Network

N
o
d
e
s
 t

ra
v
e
rs

e
d
 p

e
r 

s
e
c
o
n
d DRAM Flash

Software performance measured using fast SAN

Optimized flash system can achieve comparable 
performance with a smaller cluster



Acceleration-Emphasized Example
-- High-Dimensional Search

❑ Curse of dimensionality: Difficult to create effective index structure for 
high-dimensional data
o Typically, index structure reduces problem space, and direct comparison against 

remaining data

o Low locality between queries → Caching ineffective → Everything comes from 
storage anyways → Storage good place for accelerator

❑ Computation naturally scales as more storage is added



Acceleration-Emphasized Example
-- High-Dimensional Search

❑ Image similarity search 
example
o Effective way to overcome 

CPU performance bottleneck

o Much lower power 
consumption thanks to FPGA 

CPU Bottleneck



A More Complex Example
-- Graph Analytics

❑ Graph algorithms are often random-access intensive
o Cannot predict which vertex to visit next, before processing the current one

o Search, Statistical analytics, Subgraph isomorphism…

o Requires fast random-access into TBs of memory
• Large, multi-TB machine, or distributed systems with fast networking

❑ Algorithmic changes required to make access amenable to storage
o Coarse granularity, high latency, but acceptable bandwidth

o New algorithms increased computational overhead, offloaded to FPGAs



A More Complex Example
-- Graph Analytics -- GraFBoost (2018)

80

0

20

40

60

80

100
H

o
st

 M
e

m
o

ry
 (

G
B

)

Conventional

GraFBoost

32

2
0

5

10

15

20

25

30

35

Th
re

ad
s

Conventional

GraFBoost

410

0

200

400

600

800

W
at

ts

Conventional

GraFBoost

2

16

720

4080
160

External analytics Hardware Acceleration
External Analytics

+ Hardware Acceleration


